Effect of Different Types of Extractants in the Separation of Rare Earth Metals using Emulsion Liquid Membrane Method: A Review

Authors

  • Ninda Anisyabana Universitas Padjadjaran
  • Anni Anggraeni Universitas Padjadjaran
  • Uji Pratomo Universitas Padjadjaran
  • Riska Anbar Fadiyah Universitas Padjadjaran

DOI:

https://doi.org/10.22487/j24775185.2021.v10.i2.pp105-118

Keywords:

Rare earth metals, emulsion liquid membrane, extractants

Abstract

Rare Earth Metals (REMs) are minerals which needed in modern technology because it has unique chemical, catalytic, electrical and paramagnetic properties, so REMs have the potential to be applied in various fields. The similarity in the physical and chemical properties of REMs causes them to be difficult to separate from their parent minerals. Emulsion Liquid Membrane is an effective and efficient method for REMs purification and separation because in practice it only requires a small amount of solvent, the diffusion rate and mass transfer are high, fast, and simultaneous compared to the solvent extraction method which requires many extraction steps and requires a lot of solvents. In the emulsion liquid membrane method, one of the factors that can determine the success of the extraction process is the selectivity of the ligands/extractants. The extractants must be highly selective against the target REM ions, both in the external aqueous phase and the internal aqueous phase. Therefore, this review aimed to determine the selectivity of various types of extractants such as D2EHPA, Cyanex 302, Cyanex 572, (RO)2P(O)OPh-COOH, Aniline, and TBP on extraction efficiency and stripping efficiency in the separation of rare earth metals through the emulsion liquid membrane method.

Author Biographies

Ninda Anisyabana, Universitas Padjadjaran

Jurusan Kimia/FMIPA 

Anni Anggraeni, Universitas Padjadjaran

Jurusan Kimia/FMIPA

Uji Pratomo, Universitas Padjadjaran

Jurusan Kimia/FMIPA 

Riska Anbar Fadiyah, Universitas Padjadjaran

Jurusan Kimia/FMIPA

References

Alpaydin, S., Saf, A. Ö., Bozkurt, S., & Sirit, A. (2011). Kinetic study on removal of toxic metal Cr(VI) through a bulk liquid membrane containing p-tertbutylcalix[4]arene derivative. Desalination, 275(1-3), 166–171.

Anitha, M., Ambare, D. N., Singh, D. K., Singh, H., & Mohapatra, P. K. (2015). Extraction of neodymium from nitric acid feed solutions using an emulsion liquid membrane containing TOPO and DNPPA as the carrier extractants. Chemical Engineering Research and Design, 98(June), 89–95.

Aryadi, S. (2011). Ekstraksi torium dari konsentrat Th, LTJ (Hidroksida) menggunakan solven Bis-2-Etil Heksil Fosfat. Prosiding Seminar Penelitian Dan Pengelolaan Perangkat Nuklir (pp. 40–47). Yogyakarta: Badan Tenaga Nulir Nasional.

Asnani, C., & Patra, R. (2013). Rare earth from monazite - Indian experience. Conference of Metallurgist (pp. 167–172). Montreal: Canadian Institute of Mining, Metallurgy and Petroleum.

Balasubramanian, A. (2017). Box–Behnken modelling of phenol removal from aqueous solution using emulsion liquid membrane. International Research Journal of Engineering and Technology (IRJET), 04(07), 489–493.

Basuki, K. T., & Pamungkas, N. S. (2019). Separation factor of Y/Dy emulsion on membrane process using nitric acid and D2EHPA solvent. Indonesian Journal of Chemistry, 19(4), 865–872.

Binnal, P., & Hiremath, P. G. (2012). Application of liquid emulsion membrane technique for the removal of As(V) from aqueous solutions. Journal of the Institution of Engineers (India) - Series E, 93(March), 1–8.

Binnemans, K., Jones, P. T., Blanpain, B., Gerven, T. V., Yang, Y. X., Walton, A., & Buchert, M. (2013). Recycling of rare earth: A critical review. Journal of Cleaner Production, 51(July), 1–22.

Cerna, M., Volaufova, E., & Rod, V. (1992). Extraction of light rare earth elements by amines at high inorganic nitrate concentration. Hydrometallurgy, 28(3), 339–352.

Chakraborty, M., Bhattacharya, C., & Datta, S. (2010). Emulsion liquid membranes : Definitions and classification, theories, module design, applications, new directions and perspectives. In Vladimir S. Kislik (Eds.), Liquid Membranes: Principles and Applications in Chemical Separations and Wastewater Treatment (pp. 141–199). New York: Elsevier.

Chaouchi, S., & Hamdaoui, O. (2014). Extraction of priority pollutant 4-nitrophenol from water by emulsion liquid membrane: emulsion stability, effect of operational conditions and membrane reuse. Journal of Dispersion Science and Technology, 35(9), 1278–1288.

Chaouchi, S., & Hamdaoui, O. (2015). Extraction of endocrine disrupting compound propylparaben from water by emulsion liquid membrane using trioctylphosphine oxide as carrier. Journal of Industrial Engineering. Chemistry, 22(February), 296–305.

Chen, L., Wang, Y., Yuan, X., Ren, Y., Liu, N., Yuan, L., & Feng, W. (2018). Highly selective extraction of uranium from nitric acid medium with phosphine oxide functionalized pillar[5]arenes in room temperature ionic liquid. Separation and Purification Technology, 192(February), 152-159.

Choudhury, A., Sengupta, S., Bhattacharjee, C., & Datta, S. (2010). Extraction of hexavalent chromium from aqueous Stream by emulsion liquid membrane (ELM). Separation Science and Technology, 45(2), 178–185.

Clausse, D., Pezron, I., & Komunjer, L. (1999). Stability of W/O and W/O/W emulsions as a result of partial solidification. Colloids Surfaces: Physicochemical and Engineering Aspect, 152(1-2), 23-29.

Coleman, C. F. (1963). Amine as extractants. Nuclear Science and Engineering, 17(2), 274–286.

Davoodi-Nasab, P., Rahbar-Kelishami, A., Safdari, J., & Abolghasemi, H. (2018a). Evaluation of the emulsion liquid membrane performance on the removal of gadolinium from acidic solutions. Journal of Molecular Liquids, 262, 97–103.

Davoodi-Nasab, P., Rahbar-kelishami, A., Safdari, J., & Abolghasemi, H. (2018b). Selective separation and enrichment of neodymium and gadolinium by emulsion liquid membrane using a novel extractant CYANEX® 572. Minerals Engineering, 117(March), 63–73.

García, M. G., Acosta, A. O., & Marchese, J. (2013). Emulsion liquid membrane pertraction of Cr(III) from aqueous solutions using PC-88A as a carrier. Desalination, 318(June), 88-96.

Gupta, C. K., & Krishnamurthy, N. (2005). Extractive metallurgy of rare earth. Florida: CRC Press.

Hasan, M. A., Aglan, R. F., & El-Reefy, S. A. (2009). Modeling of gadolinium recovery from nitrate medium with 8-hydroxyquinoline by emulsion liquid membrane. Journal of Hazardous Material, 166(2–3), 1076-1081.

Hirai, T., & Orikoshi, T. (2004). Preparation of Gd2O3: Yb, Er and Gd2O2S: Yb, Er infrared-to-visible conversion phosphor ultrafine particles using an emulsion liquid membrane system. Journal of Colloid and Interface Science, 269(1), 103–108.

Hoenderdaal, S., Espinoza, L. T., & Marscheider-Weidemann, F. M., & Graus, W. (2013). Can a dysprosium shortage threaten green energy technologies?. Energy, 49(January), 344-355.

Ismail, N. A., Aziz, M. A. A., Yunus, M. Y. M., & Hisyam, A. (2019). Selection of extractant in rare earth solvent extraction system : A review. International Journal of Recent Technology and Engineering (IJRTE), 8(1), 728–743.

Jolly, H. J. (1975). Rare earth elements and yttrium, mineral facts and problems. US: Bureau of Mines.

Kargari, A. (2013). Simultaneous extraction and stripping of 4-chlorophenol from aqueous solutions by emulsion liquid membrane. Desalinination and Water Treatment, 51(10-12), 2275–2279.

Kolev, S. D. (2005). Membranes techniques: Liquid membranes. In P. Worsfold, A. Townshend, C. Poole (Eds.), Encyclopedia of Analytical Science (pp 531-538). Amsterdam: Elsevier.

Krea, M., & Khalaf, H. (2000). Liquid–liquid extraction of uranium and lanthanides from phosphoric acid using a synergistic DOPPA–TOPO mixture. Hydrometallurgy, 58(3), 215-225.

Kulkarni, P. S., & Mahajani, V. V. (2002). Application of liquid emulsion membrane (LEM) process for enrichment of molybdenum from aqueous solutions. Journal of Membrane Science, 201(1-2), 123–135.

Kulkarni, P. S., Tiwari, K. K., & Mahajani, V. V. (2000). Membrane stability and enrichment of nickel in the liquid emulsion membrane process. Journal of Chemical Technology and Biotechnology, 75(7), 553–560.

Kumbasar, R. A. (2008). Transport of cadmium ions from zinc plant leach solutions through emulsion liquid membrane-containing aliquat 336 as a carrier. Separation and Purification Technology, 63(3), 592–599.

Kumbasar, R. A., & Tutkun, O. (2006). Selective separation of gallium from acidic leach solutions by emulsion liquid membranes. Separation Science Technology, 41(12), 2825–2847.

Laguel, S., & Samar, M. E. (2019). Removal of europium(III) from water by emulsion liquid membrane using cyanex 302 as a carrier. Desalination and Water Treatment, 165, 269–280.

Laki, S., Shamsabadi, A. A., Madaeni, S. S., & Niroomaneshd, M. (2015). Separation of manganese from aqueous solution using emulsion liquid membrane. RSC Advances, 5(102), 84195–84206.

Larquet, E., Dragoe, D., Serra, O. A., & Gacoin, T. (2017). Lanthanoid-doped phosphate/vanadate mixed hollow particles as ratiometric luminescent sensors. ACS Applied Material & Interfaces, 9(2), 1635-1644.

Liang, P., Liming, W., & Guoqiang, Y. (2011). Separation of Eu(III) with supported dispersion liquid membrane system containing D2EHPA as carrier and HNO3 solution as stripping solution. Journal of Rare Earths, 29(1), 7–14.

Marcus, Y., & Abrahamer, I. (1961). Anion exchange of metal complexes—VII The lanthanides-nitrate system. Journal of Inorganic and Nuclear Chemistry, 22(1–2), 141–150.

Othman, N., Mat, H., & Goto, M. (2006). Separation of silver from photographic wastes by emulsion liquid membrane system. Journal of Membrane Science, 282(1-2), 171–177.

Perera, J. M., & Stevens, G. W. (2008). Use of emulsion liquid membrane systems in chemical and biotechnological separations. In Anil, K. Pabby, Syed S.H. Rizvi, & Ana Maria Sastre Requena (Eds.), Handbook of Membrane Separations: Chemical, Pharmaceutical, Food, and Biotechnological Applications (pp 709-735) London: Taylor & Francis Group.

Purwani, M. V, & Biyantoro, D. (2013). Ekstraksi pemisahan Th-Ce dari Ce hidroksida hasil olah monasit menggunakan membran emulsi cair dengan solven TBP. Jurnal Teknologi Bahan Nuklir, 9(2), 94–107.

Pusztai, P., Simon, T., Kukovecz, Á., & Kónya, Z. (2013). Structural stability test of hexagonal CePO4 nanowires synthesized at ambient temperature. Journal of Molecular Structure, 1044(July), 94-98.

Raji, M, Abolghasemi, H., Safdari, J., & Kargari, A. (2017a). Selective extraction of dysprosium from acidic solutions containing dysprosium and neodymium through emulsion liquid membrane by Cyanex 572 as carrier. Journal of Molecular Liquids, 254(March), 108–119.

Raji, M, Abolghasemi, H., Safdari, J., & Kargari, A. (2017b). Pertraction of dysprosium from nitrate medium by emulsion liquid membrane containing mixed surfactant system. Chemical Engineering and Processing - Process Intensification, 120(October), 184–194.

Ritcey, G. M., & Ashbrook, A. W. (1979). Solvent extraction: principles and applications to process metallurgi part II. New York: Elsevier Scientivic Publishing Company.

Sabry, R., Hafez, A., Khedr, M., & El-Hassanin, A. (2007). Removal of lead by an emulsion liquid membrane. Desalination, 212(1-2), 165–175.

Sari, D. I. P. (2017). Optimasi proses pembuatan disporsium (dy) oksida dari konsentrat itrium hasil olah pasir senotim dengan metode ekstraksi. Unpublished Thesis (S1). Yogyakarta: Universitas Negeri Yogyakarta.

Sato, T. (1989). Liquid-liquid extraction of rare-earth elements from aqueous acid solutions by acid organophosphorus compounds. Hydrometallurgy, 22(1–2), 121–140.

Seifollahi, Z., & Rahbar-Kelishami, A. (2017). Diclofenac extraction from aqueous solution by an emulsion liquid membrane: Parameter study and optimization using the response surface methodology. Journal of Molecular Liquids, 231(April), 1–10.

Setyadji, M., & Purwani, M. V. (2018). Solvent selection for extraction of neodymium concentrates of monazite sand processed product.Journal of Physic: Conference Series, 962, 1-13.

Singh, H., Mishra, S. L., & Vijayalakshmi, R. (2004). Uranium recovery from phosphoric acid by solvent extraction using a synergistic mixture of di-nonyl phenyl phosphoric acid and tri-n-butyl phosphate. Hydrometallurgy, 73(1–2), 63-70.

Srinivasan, G. S., Shivaramaiah, R., Kent, P. R. C., Stack, A. G., Riman, R., Anderko, A., Navrotsky, A., & Bryantsev. V. S. (2017). A comparative study of surface energies and water adsorption on Ce-bastnasite, La-bastnasite, and calcite via density functional theory and water adsorption calorimetry. Physical Chemistry Chemical Physics, 19(11), 7820-7832.

Suprapto, S. J. (2009). Tinjauan tentang unsur tanah jarang. Buletin Sumber Daya Geologi, 4(1), 36–45.

Swain, B., & Otu, E. O. (2011). Competitive extraction of lanthanides by solvent extraction using Cyanex 272: Analysis, classification and mechanism. Separation Purification and Technology, 83(November), 82–90.

Tunsu, C., Lapp, J. B., Ekberg, C., & Retegan, T. (2016). Selective separation of yttrium and europium using cyanex 572 for applications in fluorescent lamp waste processing. Hydrometallurgy, 166(December), 98–106.

Vahidi, E., & Zhao, F. (2017). Environmental life cycle assessment on the separation of rare earth oxides through solvent extraction. Journal of Environmental Management, 203(December), 255-263.

Wang, F., Wang, W. B., Zhu, Y., & Wang, A. (2017). Evaluation of Ce(III) and Gd(III) adsorption from aqueous solution using CTS-g-(AA-co-SS)/ISC hybrid hydrogel adsorbent. Journal of Rare Earths, 35(7), 697-708.

Wang, Y., Li, F., Zhao, Z., Dong, Y., & Sun, X. (2015). The novel extraction process based on CYANEX® 572 for separating heavy rare earths from ion-adsorbed deposit. Separation and Purification and Technology, 151(September), 303–308.

Wannachod, T., Leepipatpiboon, N., Pancharoen, U., & Phatanasri, S. (2015a). Mass transfer and selective separation of neodymium ions via a hollow fiber supported liquid membrane using PC88A as extractant. Journal Industrial and Engineering. Chemistry, 21(January), 535–541.

Wannachod, T., Mohdee, V., Suren, S., Ramakul, P., Pancharoen, U., & Nootong, K. (2015b). The separation of Nd(III) from mixed rare earth via hollow fiber supported liquid membrane and mass transfer analysis. Journal Industrial and Engineering Chemistry, 26(June), 214–217.

Yan, J., & Pal, R. (2001). Osmotic swelling behavior of globules of W/O/W emulsion liquid membranes. Journal of Membrane Science, 190(1), 79-91.

Yoon, H. S., Kim, C. . J., Chung, K. W., Kim, S. D., & Kumar, J. R. (2015). Process development for recovery of dysprosium from permanent magnet scraps leach liquor by hydrometallurgical techniques. Canadian Metallurgy Quarterly, 54(3), 318–327.

Zhang, L., Chen, Q., Kang, C., Ma, X., & Yang, Z. (2016a). Rare earth extraction from wet process phosphoric acid by emulsion liquid membrane. Journal of Rare Earths, 34(7), 717-723.

Zhang, J., Zhao, B., & Schreiner, B. (2016b). Rare earth beneficiation and hydrometallurgical processing. In Jack Zhang, Baodong Zhao, & Bryan, Schreiner (Eds.), Separation Hydrometallurgy of Rare Earth Elements (pp 19-54). New York: Springer.

Zhang, Z., Jia, Q., & Liao, W. (2015). Progress in the separation processes for rare earth resources. In Jean-Claude Bünzli, & Vitalij K. Pecharsky (Eds.), Handbook on the Physic and Chemistry Rare Earths Volume 48 (pp 287–376). London: Elsevier.

Zhou, Z., Qin. W., Fei, W., & Li, Y. (2012). A study on stoichiometry of complexes of tributyl phosphate and methyl isobutyl ketone with lithium in the presence of FeCl3. Chinese Journal of Chemical Engineering, 20(1), 36–39.

Downloads

Published

2021-05-30

How to Cite

Anisyabana, N., Anggraeni, A., Pratomo, U., & Fadiyah, R. A. (2021). Effect of Different Types of Extractants in the Separation of Rare Earth Metals using Emulsion Liquid Membrane Method: A Review. Jurnal Akademika Kimia, 10(2), 105–118. https://doi.org/10.22487/j24775185.2021.v10.i2.pp105-118

Issue

Section

Articles

Most read articles by the same author(s)