The Effect of Surfactants on Separation of Light Rare Earth Metals using Emulsion Liquid Membrane Method: Review

Authors

  • Dwi Ratna Setiani Universitas Padjadjaran
  • Afifah R. Widianti Universitas Padjadjaran
  • Fauzia Salsabila Universitas Padjadjaran
  • Anni Anggraeni Universitas Padjadjaran
  • Husein H. Bahti Universitas Padjadjaran
  • Uji Pratomo Universitas Padjadjaran

DOI:

https://doi.org/10.22487/j24775185.2022.v11.i1.pp46-55

Keywords:

Rare earth metals, emulsion liquid membrane, surfactants

Abstract

Rare earth metals (REM) are scarce elements and are only found in the form of complex compounds of phosphate and carbonate. REM consists of 17 elements classified into light REM, medium REM, and heavy REM. This article is focused on lightweight REM, which is widely applied in various industrial fields. Many REM applications are increasing the demand for high-purity and bulk REMs. However, REM has almost the same physical and chemical properties, making it difficult to separate. Therefore, the separation of REM is interesting to study with various methods, one of which is Emulsion Liquid Membrane (ELM). ELM is developing a solvent extraction method involving three phases: the external phase, the internal phase, and the membrane phase. The key to the success of ELM lies in the stability of the emulsion, which is very dependent on the type and concentration of surfactants, so in the ELM process, it is necessary to choose the right concentration and type of surfactant. Therefore, this article was made to know the effect of surfactants such as span-80, span-85, and T154 in separating light REM using the ELM method.

Author Biographies

Dwi Ratna Setiani, Universitas Padjadjaran

Jurusan Kimia/FMIPA

Afifah R. Widianti, Universitas Padjadjaran

Jurusan Kimia/FMIPA 

 

Fauzia Salsabila, Universitas Padjadjaran

Jurusan Kimia/FMIPA

Anni Anggraeni, Universitas Padjadjaran

Jurusan Kimia/FMIPA

Husein H. Bahti, Universitas Padjadjaran

Jurusan Kimia/FMIPA

Uji Pratomo, Universitas Padjadjaran

Jurusan Kimia/FMIPA

References

Ahmad, A. L., Kusumastuti, A., Derek, C. J. C., & Ooi, B. S. (2011). Emulsion liquid membrane for heavy metal removal: An overview on emulsion stabilization and destabilization. Chemical Engineering Journal, 171(3), 870–882.

Anitha, M., Ambare, D. N., Singh, D. K., Singh, H., & Mohapatra, P. K. (2015). Extraction of neodymium from nitric acid feed solutions using an emulsion liquid membrane containing TOPO and DNPPA as the carrier extractants. Chemical Engineering Research and Design, 98(June), 89–95.

Basuki, K. T., & Pamungkas, N. S. (2019). Separation factor of Y/Dy emulsion on membrane process using nitric acid and D2EHPA solvent. Indonesian Journal of Chemistry, 19(4), 865–872.

Binnal, P., & Hiremath, P. G. (2012). Application of liquid emulsion membrane technique for the removal of As(V) from aqueous solutions. Journal of The Institution of Engineers (India): Series E, 93(March), 1–8.

Bjorkegren, S., & Karimi, R. F. (2012). A study of the heavy metal extraction process using emulsion liquid membranes. Unpublished master's thesis. Sweden: Chalmers University of Technology, Goteborg.

Bnyan, R., Khan, I., Ehtezazi, T., Saleem, I., Gordon, S., O’Neill, F., & Roberts, M. (2018). Surfactant effects on lipid-based vesicles properties. Journal of Pharmaceutical Sciences, 107(5), 1237–1246.

Chakraborty, M., Bhattacharya, C., & Datta, S. (2010). Emulsion liquid membranes: Definitions and classification, theories, module design, applications, new directions, and perspectives. In V. S. Kislik, Liquid membranes: Principles and applications in chemical separations and wastewater treatment 1st ed (pp. 141–199). New York: Elsevier.

Chen, Q., Ma, X., Zhang, X., Liu, Y., & Yu, M. (2018). Extraction of rare earth ions from phosphate leach solution using emulsion liquid membrane in concentrated nitric acid medium. Journal of Rare Earths, 36(11), 1190–1197.

Cotton, F. A., Wilkinson, G., Murillo, C. A., & Bochman, M. (1999). Advanced inorganic chemistry 6th ed. New York: John Willey & Son, Inc.

Davoodi-Nasab, P., Rahbar-Kelishami, A., Safdari, J., & Abolghasemi, H. (2017). Performance study of neodymium extraction by carbon nanotubes assisted emulsion liquid membrane using response surface methodology. International Journal of Chemical and Molecular Engineering, 11(2), 168-172.

Davoodi-Nasab, P., Rahbar-Kelishami, A., Safdari, J., & Abolghasemi, H. (2018). Selective separation and enrichment of neodymium and gadolinium by emulsion liquid membrane using a novel extractant CYANEX® 572. Minerals Engineering, 117(March), 63–73.

De Morais, C. A., & Mansur, M. B. (2014). Solvent extraction of gadolinium (III) from hydrochloric acid solutions with cationic extractants D2EHPA and Ionquest 801. Mineral Processing and Extractive Metallurgy (Transactions of the Institutions of Mining and Metallurgy: Section C, 123(2), 61–66.

Dukov, I. L. (1993). Synergic solvent extraction of some lanthanides with mixtures of thenoyltrifluoroacetone and benzo-15-crown-5. Monatshefte Für Chemie/Chemical Monthly, 124(June), 689–693.

El-Hefny, N. E., & El-Dessouky, S. I. (2006). Equilibrium and kinetic studies on the extraction of gadolinium(III) from nitrate medium by di-2-ethylhexylphosphoric acid in kerosene using a single drop technique. Journal of Chemical Technology and Biotechnology, 81(3), 394–400.

Fontana, D., & Pietrelli, L. (2009). Separation of middle rare-earth by solvent extraction using 2--ethylhexylphosphonic acid mono-2-Ethylhexyl ester as an extractant. Journal of Rare Earths, 27(5), 830–833.

Gaupp, R., & Adam, W. (2014). Di-acetyltartaric esters of monoglycerides (datem) and associated emulsifiers in bread making. In V. Norn. Emulsifiers in food technology (pp 86-109). Northampton: Blackwell.

Gupta, S., Khandale, P. B., & Chakraborty, M. (2019). Application of emulsion liquid membrane for the extraction of diclofenac and relationship with the stability of water-in-oil emulsions. Journal of Dispersion Science and Technology, 41(3), 393–401.

Hachemaoui, A., Meridja, D., Sirry, S. M., & Belhamel, K. (2015). Emulsion liquid membrane extraction of cerium ions from acidic solution using CYANEX 301. Algerian Journal of Natural Products, 3(3), 185–193.

Hidayah, N., Hamzah, B., & Ningsih, P. (2017). Pengaruh konsentrasi surfaktan dan perbandingan volume emulsi dengan volume fasa eksternal pada ekstraksi ion merkuri menggunakan teknik emulsi membran cair. Jurnal Akademika Kimia, 6(3), 165–169.

Hong, I. K., Kim, S. I., & Lee, S. B. (2018). Effects of HLB value on oil-in-water emulsions: Droplet size, rheological behavior, zeta-potential, and creaming index. Journal of Industrial and Engineering Chemistry, 67(November), 123–131.

Hussein, M. A., Mohammed, A. A., & Atiya, M. A. (2019). Application of emulsion and pickering emulsion liquid membrane technique for wastewater treatment: An overview. Environmental Science and Pollution Research, 26(November), 36184–36204.

Jusoh, N., & Othman, N. (2016). Stability of water-in-oil emulsion in liquid membrane prospect. Malaysian Journal of Fundamental and Applied Sciences, 12(3), 114–116.

Kakoi, T., Ura, T., Kasaini, H., Goto, M., & Nakashio, F. (1998). Separation of cobalt and nickel by liquid surfactant membranes containing a synthesized cationic surfactant. Separation Science and Technology, 33(8), 1163–1180.

Kopanichuk, I. V., Vedenchuk, E. A., Koneva, A. S., & Vanin, A. A. (2018). Structural properties of span 80/tween 80 reverse micelles by molecular dynamics simulations. The Journal of Physical Chemistry B, 122(33), 8047–8055.

Kumar, A., Thakur, A., & Panesar, P. S. (2019). A review on emulsion liquid membrane (ELM) for the treatment of various industrial effluent streams. Reviews in Environmental Science and Bio/Technology, 18(February), 153–182.

Kumbasar, R. A., & Tutkun, O. (2006). Selective separation of gallium from acidic leach solutions by emulsion liquid membranes. Separation Science and Technology, 41(12), 2825–2847.

Martins, E., Renard, D., Adiwijaya, Z., Karaoglan, E., & Poncelet, D. (2017). Oil encapsulation in core-shell alginate capsules by inverse gelation. I: dripping methodology. Journal of Microencapsulation, 34(1), 82–90.

Meilinda, H., Bahti, H. H., Anggraeni, A., & Effendi, S. (2021). Preparation of liquid emulsion membranes for separation of gadolinium(III) from samarium(III) with tributyl phosphate or di-(2-Ethylhexyl) phosphoric acid extraction based on emulsion stability. Chemical Science Journal, 12(3), 1–8.

Mohamed, Y. T., & Ibrahim, A. H. (2012). Extraction of copper from waste solution using liquid emulsion membrane. Journal of Environmental Protection, 3(1), 129–134.

Nollet, M., Boulghobra, H., Calligaro, E., & Rodier, J. D. (2019). An efficient method to determine the hydrophile-lipophile balance of surfactants using the phase inversion temperature deviation of CiEj/n-octane/water emulsions. International Journal of Cosmetic Science, 41(2), 99–108.

Purwani, M. V., Bintarti, A. N., & Subagiono, R. (2002). Pengaruh emulgator terhadap kestabilan emulsi H3PO4 dalam TOPO dan efisiensi ekstraksi membran emulsi konsentrat La dan Nd hasil olah pasir monasit. Prosiding Pertemuan dan Presentasi Ilmiah Penelitian Dasar IImu Pengetahuan dan Teknologi Nuklir. (pp. 326–333). Yogyakarta: Badan Tenaga Nuklir Nasional.

Purwani, M. V., & Biyantoro, D. (2013). Ekstraksi pemisahan Th-Ce dari Ce-hidroksida hasil olah monasit menggunakan membran emulsi cair dengan solven TBP. Jurnal Teknologi Bahan Nuklir, 9(2), 55–113.

Raji, M., Abolghasemi, H., Safdari, J., & Kargari, A. (2017). Pertraction of dysprosium from nitrate medium by emulsion liquid membrane containing mixed surfactant system. Chemical Engineering and Processing - Process Intensification, 120(October), 184–194.

Sajjadi, S. (2006). Effect of mixing protocol on the formation of fine emulsion. Chemical Engineering Science, 61(9), 3009 – 3017.

Sulistyani, R., Pusparini, W. R., & Biyantoro, D. (2016). Pemisahan Y, Dy, Gd hasil ekstraksi dari konsentrat itrium menggunakan kolom penukar ion. Prosiding Pertemuan dan Presentasi Ilmiah - Penenlitian Dasar Ilmu Pengetahuan dan Teknologi Nuklir (pp. 110–114). Surakarta: Badan Tenaga Nuklir Nasional.

Suprapto, S. J. (2009). Tinjauan tentang unsur tanah jarang. Buletin Sumber Daya Geologi 4(1), 36–47.

Suren, S., Wongsawa, T., Pancharoen, U., Prapasawat, T., & Lothongkum, A. W. (2012). Uphill transport and mathematical model of Pb(II) from dilute synthetic lead-containing solutions across hollow fiber supported liquid membrane. Chemical Engineering Journal, 191(May), 503–511.

Tasaki, T., Oshima, T., & Baba, Y. (2007). Extraction equilibrium and membrane transport of copper(II) with new N-6-(t-dodecylamido)-2-pyridinecarboxylic acid in polymer inclusion membrane. Industrial and Engineering Chemistry Research, 46(17), 5715–5722.

Torkaman, R., Moosavian, M. A., Safdari, J., & Torab-Mostaedi, M. (2013). Synergistic extraction of gadolinium from nitrate media by mixtures of bis (2,4,4-trimethylpentyl) dithiophosphinic acid and di-(2-ethylhexyl) phosphoric acid. Annals of Nuclear Energy, 62(December), 284–290.

Torkaman, R., Safdari, J., Torab-Mostaedi, M., Moosavian, M. A., & Asadollahzadeh, M. (2015). Extraction of samarium and gadolinium from aqueous nitrate solution with D2EHPA in a pulsed disc and doughnut column. Journal of the Taiwan Institute of Chemical Engineers, 48(March), 18–25.

Uezu, K., Goto, M., Irie, S., Ikemizu, K., & Nakashio, F. (1995). Extraction of rare earth metals using liquid surfactant membranes prepared by a synthesized surfactant. Separation Science and Technology, 30(17), 3325–3338.

Wang, C., Zhou, G., Kou, X., & Zheng, Z. (2011). Recovery of Sc3+ from red mud leaching solution by emulsion liquid membrane. Advanced Materials Research, 335–336(September), 1465–1468.

Wannachod, T., Phuphaibul, P., Mohdee, V., Pancharoen, U., & Phatanasri, S. (2015). Optimization of synergistic extraction of neodymium ions from monazite leach solution treatment via HFSLM using response surface methodology. Minerals Engineering, 77(June), 1–9.

Washito, M. A., Basuki, K. T., & Purwani, M. V. (1996). Ekstraksi campuran uranium dan serium dengan proses membran cair emulsi memakai ekstrakstan tributilfosfat. Prosiding Pertemuan dan Presentasi Ilmiah (pp. 6–11). Yogyakarta: Badan Tenaga Nuklir Nasional.

Wu, S., Wang, L., Zhao, L., Zhang, P., El-Shall, H., Moudgil, B., Huang, X., & Zhang, L. (2018). Recovery of rare earth elements from phosphate rock by hydrometallurgical processes – A critical review. Chemical Engineering Journal, 335(March), 774–800.

Xie, F., Zhang, T. A., Dreisinger, D., & Doyle, F. (2014). A critical review on solvent extraction of rare earth from aqueous solutions. Minerals Engineering, 56(February), 10–28.

Park, Y. (2006). Development and optimization of novel emulsion liquid membranes stabilized by non-newtonian conversion in taylor-couette flow for extraction of selected organic and metallic contaminants. Unpublished master's thesis. Atlanta: Georgia Institute of Technology,.

Zhang, L., Chen, Q., Kang, C., Ma, X., & Yang, Z. (2016). Rare earth extraction from wet-process phosphoric acid by emulsion liquid membrane. Journal of Rare Earths, 34(7), 717–723.

Downloads

Published

2022-02-28

How to Cite

Setiani, D. R., Widianti, A. R. ., Salsabila, F. ., Anggraeni, A. ., Bahti, H. H. ., & Pratomo, U. . (2022). The Effect of Surfactants on Separation of Light Rare Earth Metals using Emulsion Liquid Membrane Method: Review. Jurnal Akademika Kimia, 11(1), 46–55. https://doi.org/10.22487/j24775185.2022.v11.i1.pp46-55

Issue

Section

Articles