A Simple Analyte Volatilization in Polytetrafluoroethylene (PTFE) Vessel for Spectrophotometric Determination of Boron

Authors

  • Risna E. Y. Adu Universitas Timor
  • Roto Roto Universitas Gadja Mada
  • Agus Kuncaka Universitas Gadja Mada

DOI:

https://doi.org/10.22487/j24775185.2021.v10.i2.pp98-104

Keywords:

Aanalyte volatilization, boron, spectrophotometry, polytetrafluoroethylene vessel

Abstract

A simple analyte separation through an in-situ volatilization system in a polytetrafluoroethylene (PTFE) container was carried out for boric acid analysis in a food product by spectrophotometry. Separation was conducted in two teflon containers divided into the reagents compartment (outer vessel) and sample compartment (inner vessel). System optimization was done by varying the curcumin content and ethanol: water ratio. The optimum condition of the volatilization system was achieved at a curcumin concentration of 0.1% and ethanol: water ratio of 3:1. LOD and LOQ measurements, respectively, gave a value of 0.0413 mg/L and 0.1088 mg/L. The established method was used to determine boric acid content in sausage products by UV-Vis Spectrophotometry at 555 nm. The boric acid concentration in food samples was found to be 0.913-3.518 mg/kg. The separating method through in-situ volatilization systems in a polytetrafluoroethylene (PTFE) container can be used for boric acid analysis in food samples.

Author Biographies

Risna E. Y. Adu, Universitas Timor

Chemistry Department/Faculty of Agriculture

Roto Roto , Universitas Gadja Mada

Chemistry Department/Faculty of Mathematics and Natural Sciences

Agus Kuncaka, Universitas Gadja Mada

Chemistry Department/Faculty of Mathematics and Natural Sciences

References

See, A. S., Salleh, A. B., Bakar, F. A., Yusof, N. A., Abdulamir, A. S., & Heng, L. Y. (2010). Risk and health effect of boric acid. American Journal of Applied Sciences, 7(5), 620-627.

Adu, R. (2021). Spectrophotometric determination of boron in food products by ester borate distillation into curcumin. Journal of Chemistry, 15(1), 67-73.

Chaurasia, S. C., Sahayam, A. C., & Mishra, R. K. (2002). Room-temperature isopiestic distillation of in situ generated arsenious chloride and its application for the determination of trace level impurities in arsenious oxide. Analytical Chemistry, 74(23), 6102–6105.

Crompton, T. R. (2000). Determination of organic compounds in soils, sediments, and sludges. London: CRC Press.

Dash, K., Thangavel, S., Dhavile, S. M., Rao, S. V., Chaurasia, S. C. & Arunachalam, J. (2005). Vapor phase matrix extraction of high purity di-boron trioxide and trace analysis using electrothermal AAS. Analytica Chimica Acta, 546(2), 229–235.

Dhavile, S. M., Thangavel, S., Chandrasekaran, K., Dash, K., Rao, S. V., & Chaurasia, S. (2004). In situ matrix evaporation by isothermal distillation of high-purity reagents for the determination of trace impurities by ion chromatography. Journal of Chromatography A, 1050(2), 223–227.

Dyrssen, D. W., Novikov, Y. P., & Uppstrom, L. R. (1972). Studies on the chemistry of the determination of boron with curcumin. Analytical Chimica Acta, 60(1), 139-151.

Hayes, M. R., & Metcalfe, J. (1962). The boron-curcumin complex in the determination of trace amounts of boron. The Analyst, 87(1041), 956-969.

Kabay, N., Güler, E., & Bryjak, M. (2010). Boron in seawater and methods for its separation-A review. Desalination, 261(3), 212–217.

Litovitz, T. L., Klein-Schwartz, W., Oderda, G.M. & Schmitz, B. F. (1988). Clinical manifestations of toxicity in a series of 784 boric acid ingestions. The American Journal of Emergency Medicine, 6(3), 209–213.

Molinero, A. L., Ferrer, A., & Castillo, J. R., (1993). Volatilization of methyl borate in iron matrix determination of boron in steel by icp atomic emission spectrometry. Talanta, 40(9), 1397-1403.

Park, C. J., & Song, S., (2003). Determination of boron in high-purity sulfuric acid by ester generation and isotope dilution inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 18(10), 1248–1251.

Sahayam, A. C., Jiang, S. J., & Wan, C. C., (2004). Determination of ultra-trae impurities in high purity gallium arsenide by inductively coupled plasma mass spectrometry after volatilization of matrix. Journal of Analytical Atomic Spectrometry, 19(3), 407–409.

San, S., Kyi, K. W., & Naing, K., (2001). Spectrophotometric determination of boron in environmental water samples. Proceedings of the 15th International Mass Spectrometry Conference (pp 201-208). Barcelona: Wiley.

Thangavel, S., Dash, K., Dhavile, S. M., Chaurasia, S.C. & Mukherjee, T. (2005). Determination of traces of chloride and fluoride in H2SO4, H3PO4 and H3BO3 by in situ analyte distillation—ion chromatography. Journal of Chromatography A, 1074(1–2), 229–233.

Thangavel, S., Dhavile, S. M., Dash, K. & Chaurasia, S. C. (2004). Spectrophotometric determination of boron in complex matrices by isothermal distillation of borate ester into curcumin. Analytica Chimica Acta, 502(2), 265–270.

Ueng, R-L., Sahayam, A. C., Jiang, S-J. & Wan, C-C. (2004). Microwave-assisted volatilization of chlorides of Ge and Se for the determination of trace impurities in high purity Ge and Se by ICP-MS. Journal of Analytical Atomic Spectrometry, 19(5), 681-684.

Yiu, P. H., See. J., Rajan, A., &. Bong, C. F. J. (2008). Boric acid levels in fresh noodles and fish ball. American Journal of Agricultural and Biological Science, 3(2), 476-481.

Downloads

Published

2021-05-30

How to Cite

Adu, R. E. Y., Roto , R., & Kuncaka, A. . (2021). A Simple Analyte Volatilization in Polytetrafluoroethylene (PTFE) Vessel for Spectrophotometric Determination of Boron. Jurnal Akademika Kimia, 10(2), 98–104. https://doi.org/10.22487/j24775185.2021.v10.i2.pp98-104

Issue

Section

Articles