Synthesis and Characterisation of B-CDs/TiO2 Composite

Authors

  • Anthoni B. Aritonang Universitas Tanjungpura
  • Ajuk Sapar Universitas Tanjungpura
  • Uswatun Hasanah Tanjungpura of University
  • Adhitiyawarman Adhitiyawarman Universitas Tanjungpura
  • Puji Ardiningsih Universitas Tanjungpura

Keywords:

B-CDs, TiO2, sol-gel, microwave, photoluminescence

Abstract

Synthesis of composite boron-doped carbon nanodots (B-CDs)/TiO2 using the sol-gel method performed with titanium tetraisopropoxide (TTIP) precursor and B-CDs prepared by the microwave method using citric acid monohydrate, urea, and boric acid as precursors. The optimum concentration of boron dopant (B) on B-CDs/TiO2 is 0.5% boron (w/w) which is then used as a composite on TiO2 resulting in a brown solid and has blue luminescent under UV light. The result with UV-Vis/DRS for variation in B-CDs concentration of 0.5%, 1.25%, and 2.5% showed Eg values of 2.34 eV, 2.00 eV, and 2.29 eV. B-CDs cause the maximum emission peak (λEm) to redshift and affect the intensity of photoluminescence TiO2. The characterization of FT-IR does not indicate a new peak, there is no bonding in the B-CDs/TiO2 composite. The TiO2 diffractogram was observed to shift towards a larger 2θ which caused the crystallinity of TiO2 to decrease. Based on the photocatalytic activity test on the degradation of methylene blue solution, it showed fairly good activity. It is expected that the B-CDs/TiO2 composite has the potential to be applied as a photocatalyst to degrade organic pollutants under visible light illumination.

Author Biographies

Anthoni B. Aritonang, Universitas Tanjungpura

Program Studi Kimia/FMIPA

Ajuk Sapar, Universitas Tanjungpura

Program Studi Kimia/FMIPA

Adhitiyawarman Adhitiyawarman, Universitas Tanjungpura

Program Studi Kimia/FMIPA

Puji Ardiningsih, Universitas Tanjungpura

Program Studi Kimia/FMIPA

References

Aldrianti., Aritonang, A. B., & Syahbanu, I. (2020). Sintesis TiO2/Ti terdoping logam Fe3+ menggunakan metode anodisasi dengan bantuan sinar tampak. Jurnal Kimia Khatulistiwa, 8(3), 45-52.

Bao, L., Liu, C., Zhang, Z., & Pang, D. (2015). Photoluminescence-tunable carbon nanodots: surface-state energy-gap tuning. Advanced Materials, 27(10), 1663–1667.

Bourlinos, A. B., Trivizas, G., Karakassides, M. A., Baikousi, M., Kouloumpis, A., Gournis, D., Bakandritsos, A., Hola, K., Kozak, O., Zboril R., Papagiannouli, I., Alouskos, P., & Couris, S. (2015). Green and simple route toward boron doped carbon dots with significantly enhanced non-linear optical properties. Carbon, 83(March), 173-179.

Dewi, A. K., Aryanto, D., & Nurbaiti, U. (2020). Pengaruh perlakuan panas terhadap sifat optik lapisan tipis ZnO di atas ito. Jurnal Fisika, 10(1), 30-36.

Ghifari, A. D. A., Sanjaya, E., & Isnaeni. (2019). Pengaruh doping nitrogen, sulfur, dan boron terhadap spektrum absorbansi dan fotoluminesensi karbon dot asam sitrat. Al-Fiziya Journal of Materials Science, Geophysics, Instrumentation and Theoretical Physics, 2(2), 93-101.

Hou, J., Li, H., Wang, L., Zhang, P., Zhou, T., Ding, H., & Ding, L. (2016). Rapid microwave-assited synthesis of molecularly imprinted polymers on carbon quantum dots for fluorescent sensing of tetracycline in milk. Talanta, 146(January), 34-40.

Jia, Y., Hu, Y., Li, Y., Zeng, Q., Jiang, X., & Cheng, Z. (2019). Boron doped carbon dots as a multifunctional fluorescent probe for sorbate and vitamin B12. Microchimica Acta, 186(84), 1-10.

Kavitha, R & Devi, L. G. (2014). Synergistic effect between carbon dopant in titania lattice and surface carbonaceous species for enchanching the visible light photocatalysis. Journal of Enviromental Chemical Engineering, 2(2), 857-867.

Lestari, I. (2017). Degradasi senyawa organik pada palm oil mill secondary effluent menggunakan fotokatalis TiO2. Jurnal Citra Widya Edukasi, 9(2), 143-152.

Li, Y., Zhao, Y., Cheng, H., Hu, Y., Shi, G., Dai, L., & Qu, L. (2012). Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. Journal of The American Chemical Society, 134(1), 15-18.

Linsebigler, A. L., Lu, G., & Yates, J. T. (1995). Photocatalysis on TiO2 surfaces: Prinsiples, mechanisms, and selected results. Chemical Reviews, 95(3), 735-758.

Luo, H., Dimitrov, S., Daboezi, M., Kim, J., Guo, Q., Fang, Y., Stoeckel, M., Samori, P., Fenwick, O., Sobrido, A. B. J., Wang, X., & Titirici, M. (2020). Nitrogen-doped carbon dots/TiO2 nanoparticle composites for photoelectrochemical water oxidations. American Chemical Society Applied Nano Materials, 3(March), 3371-3381.

Martins, N. C. T., Ângelo J., Girão, A. V., Trindade, T., Andrade, L., & Mendes, A. (2016). N-doped carbon quantum dots/TiO2 composite with improved photocatalytic activity. Applied Catalysis B: Environmental, 192(September), 67-74.

Niu, J., Gao, H., Wang, L., Xin, S., Zhang, G., Wang, Q., Guo, L., Liu, W., Gao, X., & Wang, Y. (2014). Facile synthesis and optical properties of nitrogen doped carbon dots. New Journal of Chemistry, 38(4), 1522-1527.

Pal, A., Ahmad, K., Dutta, D., & Chattopadhyay, A. (2019). Boron doped carbon dots with unusually high photoluminescence quantum yield for ratiometric intracelluler pH sensing. A European Journal Chemphyschem of Chemical Physics and Physical Chemistry, 20(8), 1018-1027.

Putro, P. A., Roza, L., & Isnaeni. (2019). Karakterisasi sifat optik c-dots dari kulit luar singkong menggunakan teknik microwave. Jurnal Teknologi Technoscientia,11(2), 128-136.

Qu, D., Zheng, M., Du, P., Zhou, Y., Zhang, L., Li, D., Tan, H., Zhao., Xie, Z., & Sun, Z. (2013). Highly luminescent s, n co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale, 5(24), 12272-12277.

Qu, S., Wang, X., Lu, Q., Liu, X., & Wang, L. (2012). A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angewandte International Edition Chemie, 51(49), 12215-12218.

Rahbar, M., Mehrzad, M., Behpour, M., Mohammadi-Aghdam, S., & Ashrafi, M. (2019). S, n co-doped carbon quantum dots/TiO2 nanocomposite as highly efficient visible light photocatalyst. Nanotechnology, 30(September), 1-16.

Sadhanala, H. K., & Nanda, K. K. (2016). Boron doped carbon nanoparticles: Size-independent color tunability from red to blue and bioimaging applications. Carbon, 96(January), 166–173.

Shen, S., Li, R., Wang, H., & Fu, J. (2021). Carbon dot–doped titanium dioxide sheets for the efficient photocatalytic performance of refractory pollutants. Frontier in Chemistry, 9(September), 1-10.

Syafei, D., Sugiarti, S., Darmawan, N., & Khotib, M. (2017). Synthesis of TiO2/carbon nanoparticle (C-dot) composites as active catalysts. Indonesia Journal of Chemistry, 17(1), 37-42.

Vinayak, Khan, F., Dewangan, P. K., & Chandra, C. (2019). Bovine serum albumin loaded boron doped carbon dots as a sensing probe for the detection of Pb(II) ion in water samples. International Journal of Basic and Applied Research, 9(3), 162-168.

Yan, Y., Chen, J., Li, N., Tian, J., Li, K., Jiang, J., Tian, Q., & Chen, P. (2018). Systematic bandgap engineering of graphene quantum dots and applications for photocatalytic water splitting and CO2 reduction. American Chemical Society Nano, 12(March), 3523–3532.

Yao, Y., Li, G., Ciston, S., Lueptow, R. M., & Gray, K. A. (2008). Photoreactive TiO2/carbon nanotube composites: Synthesis and reactivity. Environmental Science & Technology, 42(13), 4952–4957.

Zhang, Y., Liu, X., Fan, Y., Guo, X., Zhou, L., Lv, Y., & Lin, J. (2016). One-step microwave synthesis of n-doped hydroxyl functionalized carbon dots with ultra-high fluorescence quantum yields. Nanoscale, 8(33), 15281–15287.

Downloads

Published

2022-11-30

How to Cite

Aritonang, A. B. ., Sapar, A., Hasanah, U. ., Adhitiyawarman, A., & Ardiningsih, P. . (2022). Synthesis and Characterisation of B-CDs/TiO2 Composite. Jurnal Akademika Kimia, 11(4), 202–210. Retrieved from https://jurnal.fkip.untad.ac.id/index.php/jak/article/view/2451

Issue

Section

Articles