Phospate Release Study on Silica Gel and Amino Silica Hybrid Sorbent from Lapindo Mud

Authors

  • Ade I. Agipa UIN Sultan Maulana Hasanuddin Banten
  • Muhamad F. Muarif UIN Sultan Maulana Hasanuddin Banten

DOI:

https://doi.org/10.22487/j24775185.2022.v11.i2.pp83-90

Keywords:

Lapindo mud, silica gel, amino silica hybrid, 3-aminopropyltriethoxysilane (APTES)

Abstract

This study discusses the rate of phosphate release in Silica Gel (SG) and Amino Silica Hybrid (ASH) sorbents using Lagergren pseudo-first Order Kinetic and Lagergren Pseudo-second Order Kinetic. ASH synthesis was done by adding a 3-aminopropyltriethoxysilane (APTES) modifier to sodium silicate from Lapindo Mud. Phosphate binding was carried out at 30 minutes with a stirring speed of 250 rpm. Analysis using IR spectrophotometer showed the success of ASH synthesis as indicated by the appearance of functional groups -NH2 and -CH2 at wavenumbers 1635 cm-1 and 1473 cm-1. With the continuous method, SG and ASH sorbents that have bound phosphate were then desorbed at various times of 2, 3, 4, 7, 8, and 9 days. The amount of phosphate anion released from SG and ASH was tested using a UV-Vis instrument then modeling was carried out to determine the rate of phosphate release. The desorption results showed the amount of phosphate released from the ASH sorbent was less than that of the SG sorbent. Through modeling, the proceeds of the phosphate release rate follow the Lagergren Pseudo-second Order Kinetic with an experimental QE of 0.22089 M/g for SG sorbent and 0.33333 M/g for ASH sorbent.

Author Biographies

Ade I. Agipa, UIN Sultan Maulana Hasanuddin Banten

Program Studi Biologi/FSains

Muhamad F. Muarif, UIN Sultan Maulana Hasanuddin Banten

Program Studi Fisika/FSains

References

Audette, Y., O’Halloran, I. P., Evans, L. J., Martin, R. C., & Voroney, R. P. (2016). Kinetics of phosphorus forms applied as inorganic and organic amendments to a calcareous soil II: Effects of plant growth on plant available and uptake phosphorus. Geoderma, 279(1), 70–76.

Braun, S., McLaren, T. I., Frossard, E., Tuyishime, J. R. M., Börjesson, G., & Gustafsson, J. P. (2022). Phosphorus desorption and isotope exchange kinetics in agricultural soils. Soil Use and Management, 38(1), 515–527.

Buhani., & Suharso. (2010). Modifikasi silika dengan 3-aminopropiltrimetoksisilan melalui proses sol gel untuk adsorpsi ion Cd(II) dari larutan. Jurnal Sains MIPA, 16(3), 177–183.

Buhani., Narsito., Nuryono., & Kunarti, E. S. (2009). Amino and mercapto-silica hybrid for Cd(II) adsorption in aqueous solution. Indonesian Journal of Chemistry, 9(2), 170–176.

Chen, L., Zhao, X., Pan, B., Zhang, W., Hua, M., Lv, L., & Zhang, W. (2015). Preferable removal of phosphate from water using hydrous zirconium oxide-based nanocomposite of high stability. Journal of Hazardous Materials, 284(March), 35–42.

Gypser, S., & Freese, D. (2020). Phosphorus release from vivianite and hydroxyapatite by organic and inorganic compounds. Pedosphere, 30(2), 190–200.

Huang, W., Zhang, Y., & Li, D. (2017). Adsorptive removal of phosphate from water using mesoporous materials: A review. Journal of Environmental Management, 193(May), 470–482.

Ikhsan, J., Sulastri, S., & Priyambodo, E. (2018). Phosphate and nitrate sorption by amine-modified silica as the study of slow release fertilizer. Journal of Physics: Conference Series, 1097(012048), 1-14.

Jalali, M., & Peikam, E. N. (2013). Phosphorus sorption-desorption behaviour of river bed sediments in the Abshineh river, Hamedan, Iran, related to their composition. Environmental Monitoring and Assessment, 185(January), 537–552.

Kondalkar, M., Fegade, U., Attarde, S., & Ingle, S. (2018). Experimental investigation on phosphate adsorption, mechanism and desorption properties of Mn-Zn-Ti oxide trimetal alloy nanocomposite. Journal of Dispersion Science and Technology, 39(11), 1635–1643.

Maslukah, L., Zainuri, M., Wirasatriya, A., & Widiaratih, R. (2020). Studi kinetika adsorpsi dan desorpsi ion fosfat (PO42-) di sedimen perairan Semarang dan Jepara. Jurnal Ilmu dan Teknologi Kelautan Tropis, 12(2), 383–394.

Rahmayanti, A., A’Yuni, Q., Hartati., Purkan., & Romanza, I. G. (2020). Synthesis and characterization of silica gel from lapindo mud Sidoarjo. IOP Conference Series: Earth and Environmental Science, 456(012007), 1-7.

Saki, H., Liu, H., & Lennartz, B. (2020). Phosphate sorption onto structured soil. Soil Systems, 4(21), 1–13.

Sdiri, A., Higashi, T., Bouaziz, S., & Benzina, M. (2014). Synthesis and characterization of silica gel from siliceous sands of southern Tunisia. Arabian Journal of Chemistry, 7(4), 486–493.

Sriyanti., Taslimah., Nuryomo., & Narsito. (2005). Sintesis bahan hibrida amino-silika dari abu sekam padi melalui proses sol-gel. Jurnal Kimia Sains & Aplikasi, VIII(1), 1-8.

Swasdika, F., Trisunaryanti, W., & Falah, L. I. (2021). Hydrotreatment of cellulose-derived bio-oil using copper and/or zinc catalysts supported on mesoporous silica-alumina synthesized from lapindo mud and catfish bone. Indonesian Journal of Chemistry, 21(2), 268–278.

Yang, X., Chen, X., & Yang, X. (2019). Phosphorus release kinetics and solubility capacity of phosphorus fractionation induced by organic acids from a black soil in northeast China. Canadian Journal of Soil Science, 99(January), 92–99.

Zaemi, H., & Tjahjanto, R. T., & Darjito. (2013). Sintesis aerogel silika dari lumpur lapindo dengan penambahan trimetilklorosilan (Tmcs). Jurnal Ilmu Kimia Universitas Brawijaya, 1(2), 208–214.

Downloads

Published

2022-05-30

How to Cite

Agipa, A. I., & Muarif, M. F. (2022). Phospate Release Study on Silica Gel and Amino Silica Hybrid Sorbent from Lapindo Mud. Jurnal Akademika Kimia, 11(2), 83–90. https://doi.org/10.22487/j24775185.2022.v11.i2.pp83-90

Issue

Section

Articles