Analysis of Calcium (Ca) and Potassium (K) Levels in Candlenut Shells (Aleurites moluccana Willd)

*Megawati T. H. Romu, Siti Nuryanti & Sitti Aminah
Pendidikan Kimia/FKIP – Universitas Tadulako, Palu – Indonesia 94119
Received 27 December 2019, Revised 31 January 2019, Accepted 27 February 2020

Abstract
Candlenut shell (Aleurites moluccana Willd) is a waste produced from processing candlenut plants with a fairly hard texture. The use of candlenut shells as fertilizer, especially in Central Sulawesi, has not been done so much. The aim of this study was to determine the levels of calcium (Ca) and potassium (K) in candlenut shells. Calcium and potassium levels were determined using an atomic absorption spectrophotometer (AAS). The results show that the average calcium level in the candlenut shell is 0.315 ± 0.09%, while the average potassium level is 0.090 ± 0.01%. The results of Ca and K in candlenut shell are expected to be used as raw material for fertilizer production.

Keywords: Candlenut shell (Aleurites moluccana Willd), calcium, potassium, atomic absorption spectrophotometer (AAS)

Pendahuluan
Tanaman kemiri (Aleurites moluccana Willd) merupakan jenis tanaman yang mudah ditanam, cepat tumbuh dan tidak begitu banyak memenuhi persyaratan tempat tumbuh (Sunanto, 1994). Tanaman kemiri hidup di daerah tropis dan subtropis sehingga dapat ditanam di daerah dataran rendah maupun dataran tinggi, baik di tanah yang subur maupun tanah yang kurang subur jika ditanam dengan baik pada kelembapan tanah yang cukup (Stuwanto dkk., 2014).

Tanaman kemiri merupakan tanaman industri, sebab produk yang dihasilkan dapat dipakai untuk bahan berbagai barang industri (Harsono dkk., 2018). B alkii maupun bagian lain dari tanaman dapat dijadikan bahan baku industri kecantikan, farmasi, cat, dan perabot rumah tangga. Bahan, akhir-akhir ini diketahui bahwa kayu kemiri mempunyai potensi untuk bahan pembuatan batang korek api dan pembuatan kertas. Masyarakat sudah terbiasa menjual biji kemiri dengan mengupas (menecah) biji kemiri sehingga daging biji terpisah dari kulitnya yang hanya terbuang begitu saja sehingga menjadi limbah yang sangat meresahkan masyarakat (Laos dkk., 2016).

Kemiri mempunyai 2 lapis kulit yaitu kulit buah dan cangkang, dari setiap kilogram biji kemiri akan dihasilkan 30% inti dan 70% cangkang (Gianyar dkk., 2012). Cangkang kemiri merupakan salah satu produk sampingan dari proses pemanenan buah kemiri. Potensi cangkang kemiri saat ini terus meningkat, dengan semakin luasnya perkebunan kemiri yang terdapat di Indonesia.

Cangkang kemiri menjadi limbah organik yang dapat diuraikan namun dengan teksturnya yang cukup keras membutuhkan waktu untuk menguraiannya secara alamiah, sehingga dilakukan berbagai upaya untuk memanfaatkan limbah cangkang kemiri (Surest dkk., 2008). Limbah cangkang kemiri cukup melimpah dan dapat digunakan sebagai bahan baku pembuatan pupuk. Limbah ini tentunya akan sangat berpotensi bagi masyarakat apabila dimanfaatkan menjadi produk yang mempunyai nilai jual (Hendra & Darmawan, 2007).

Hendra & Darmawan (2007) menyatakan bahwa biasanya masyarakat menggunakan dan memanfaatkan cangkang kemiri sebagai arang untuk bahan bakar. Arang pada umumnya mengandung abu sebesar 2-3%. Berdasarkan hasil penelitian Lempang & Tikupadang (2013) diperoleh bahwa cangkang kemiri mengandung holoselulosa sebesar 49.22%, lignin sebesar 54.64%, dan abu sebesar 2.07%. Analisa unsur dalam kulit dan kayu pohon daun lebar

*Correspondence
Megawati T. H. Romu
e-mail: megaromu@gmail.com
© 2020 the Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Kalsium merupakan mineral yang diperlukan untuk pertumbuhan dan berfungsi sebagai sumbangan untuk kalsium yang dibutuhkan tanaman untuk tumbuh semakin terhadap (Suprihatin, 2011). Tanaman memerlukan kalsium dari dalam tanah yang dianbi oleh akar dan dikirim ke tunas melalui xilem, kalsium (ion beruang positif) dilarutkan dalam air tanah (White, 2001). Sumber kalsium yang terdapat dalam tanah berasal dari batuan kapur (kalsit). Tanah yang berasal dari batuan kapur memiliki kadar kalsium yang tinggi (Rosmarkam & Yuwono, 2002).

Kalium merupakan mineral yang diperlukan oleh tanaman, terutama ketika proses fotosintesis yaitu untuk mengangkut gula dari daun kejaringan tanaman yang luar dan meningkatkan kekebalan tanaman agar tahan terhadap penyakit. Kalium ditemukan dalam jumlah banyak di dalam tanah, tetapi hanya sebagian kecil yang digunakan oleh tanaman yaitu yang larut dalam air atau yang dapat dipertukarkan. Unsur ini berada bebas dalam golongan sel dan titik tumbuh tanaman, dapat memacu pertumbuhan tanaman, membantu daya tahan tanaman terhadap serangan hama, penyakit dan kekeringan (Lawani, 1955).

Tulisan ini mendeskripsikan penelitian tentang analisis kandungan kalsium (Ca) dan kalium (K) dalam cangkang kemiri. Sehingga sangat penting diketahui kadar unsur kalsium dan kalium pada cangkang kemiri, agar cangkang kemiri tidak hanya menjadi limbah tetapi dapat dimanfaatkan sebagai bahan baku pembuatan pupuk.

Metode

Alat yang digunakan dalam penelitian ini adalah cawan penguap, gelas ukr, gelas kimia, pipet tetes, batang pengaduk, kertas saring, oven, labu ukr, gegep, corong pisah, kertas label, tanur, spatula, desikator, neraca digital, botol sempit, dan Spektrofotometer Serapan Atom (SSA) GBC 923 AA, serta lampu katoda untuk logam Ca dan logam K.

Bahan yang digunakan dalam penelitian ini adalah cangkang kemiri (Aleuveres moluccana Willd.), larutan HNO₃, pekt 65% (Merck), aquades, tisu, dan larutan standar untuk kalsium (Merck) dan kalium (Merck).

Prosedur Penelitian

Pengambilan Sampel

Sampel yang digunakan dalam penelitian ini adalah cangkang kemiri yang diperoleh dari Tamanjeka Kecamatan Poso Pesisir Kabupaten Poso, Sulawesi Tengah.

Preparasi Sampel

Cangkang kemiri dicuci untuk membersihkan kotoran-kotoran (sisa-sisa daging buah kemiri, kerikil, tanah) dan dipecah menjadi beberapa bagian, diangin-anginkan pada suhu kamar, kemudian ditimbang lalu dikeringkan dengan cara dioven pada suhu 100°C selama 2 jam. Cangkang kemiri yang telah dioven didinginkan di dalam desikator dan ditimbang.

Penentuan Kadar Air dan Kadar Abu

100 gram cangkang kemiri diletakkan dalam cawan penguap, lalu dipanaskan dalam oven pada suhu 105°C selama ±3 jam, setelah itu didinginkan dalam desikator dan ditimbang, lalu dialangi sampai diperoleh berat konstan. Kemudian ditentukan kadar airnya dengan rumus kadar air (Sudarmadji dkk., 1989).

Cangkang kemiri kering ditimbang diperoleh yaitu 97.40 gram dan diletakkan dalam cawan penguap. Cangkang kemiri kemudian diabukan dengan menggunakan tanur pada suhu 700°C selama ±3 jam sampai menjadi abu, setelah itu didinginkan dalam desikator dan ditimbang dan ditentukan kadar abunya dengan rumus kadar abu (Sudarmadji dkk., 1989).

Pengambilan Sampel

0,5 gram sampel abu cangkang kemiri ditambahkan larutan HNO₃ pekt 5 mL. Sampel abu kemudian ditambahkan 10 mL aquades, lalu disaring menggunakan kertas saring hingga terpisah antara filtrat dan residu. Filtrat yang diperoleh diencerkan dengan aquades dalam labu ukr 50 mL sampai tanda batas.

Analisis Kadar Kalsium dan Kalium

Larutan sampel cangkang kemiri yang telah diperoleh diambil beberapa mL kemudian analisis kalsium dan kalium dengan spektrofotometer serapan atom pada panjang gelombang yang berbeda, dimana panjang gelombang yang digunakan yaitu untuk, kalsium 422.7 nm dan kalium 766.5 nm. Analisis kadar kalsium dan kalium pada sampel dilakukan pengulangan sebanyak 2 kali.

Hasil dan Pembahasan

Kadar Air dan Kadar Abu pada Cangkang Kemiri

Kadar air merupakan salah satu parameter bahan pangan yang paling menentukan karakter dan umur simpan. Secara umum, semakin tinggi kadar air suatu bahan, maka akan semakin singkat umur simpan suatu bahan pangan tersebut (Winarno, 2004).

Analisis kadar air bertujuan untuk mengetahui seberapa besar kadar air yang terdapat pada cangkang kemiri yang akan dianalisis. Penentuan kadar air dapat dilakukan dengan beberapa metode yaitu metode pengerining/oven, metode destilasi, metode desikasi kimia, dan metode khusus (NMR).
Pada penelitian ini, menggunakan metode pengeringan/oven. Metode pengeringan/oven didasarkan atas prinsip perhitungan selisih bobot bahan sampel sebelum dan sesudah pengeringan. Selisih bobot tersebut merupakan air yang teruapkan dan dihitung sebagai kadar air bahan, air di dalam bahan pangan ada dalam tiga tipe yaitu air lapisan tunggal (water monolayer), air lapisan banyak (water multilayer) dan air bebas. Pada pengukuran kadar air bahan pangan, air yang terukur adalah air lapisan banyak (water multilayer) dan air bebas, karena kedua tipe air tersebut mudah dihilangkan dengan proses pengeringan (Andrawulan dll., 2011). Hasil penelitian ini menunjukkan cangkang kemiri mempunyai kadar air sebesar 2.59%.

Menurut Lubis (2014) ada dua prosedur yang umum digunakan untuk mendestruksi bahan-bahan organik dalam sampel, yaitu dengan oksidasi basah (wet oxidation) dan pengabuan kering (dry ashing). Dalam penelitian ini dekstruksi sampel menggunakan prosedur pengabuan kering.

Kadar abu suatu sampel padat perlu ditentukan untuk melakukan estimasi berapa banyak unsur-

<table>
<thead>
<tr>
<th>Tabel 1 Data kadar kalsium (Ca) dalam Cangkang Kemiri (Aleurites moluccana Willd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td>Rata-rata</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabel 2 Data kadar kalium (K) dalam Cangkang Kemiri (Aleurites moluccana Willd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td>Rata-rata</td>
</tr>
</tbody>
</table>

Analisis kadar kalsium dan kalium pada sampel dilakukan sebanyak 2 kali. Hasil yang diperoleh pada penelitian ini adalah rata-rata konsentrasi kalsium dalam larutan sampel 9.390 ± 1.68 mg/L dan rata-rata kadar kalsium pada sampel 0.315 ± 0.09%. Sedangkan rata-rata konsentrasi kalium dalam larutan sampel 1.943 ± 0.27 mg/L dan rata-rata kadar kalium pada sampel 0.090 ± 0.01%. Kadar kalsium dan kalium yang diperoleh dalam penelitian ini jika dibandingkan berdasarkan hasil yang diperoleh dengan literatur, keduanya memiliki perbedaan. Kadar kalsium yang diperoleh dalam penelitian yang dilakukan oleh Lempang & Tikupadang (2013) tentang aplikasi arang aktif tempurung kemiri sebagai komponen media tumbuh semai melina, untuk arang aktifnya memiliki kadar CaO sebesar 0.86% dan kadar K2O sebesar 0.71%. Adanya perbedaan hasil yang diperoleh dari penelitian ini dengan literatur disebabkan karena pada literatur sampel yang dianalisis bukan dalam bentuk unsur murni, tetapi sampel tersebut dalam bentuk unsur hara yang telah menyatu dengan media tanam (tanah).
Perbedaan kadar kalium dan kalsium dari sampel cangkang kemiri juga disebabkan karena adanya perbedaan lingkungan, tempat tumbuh, keadaan tanah dan cuaca, sehingga mempengaruhi kandungan nutrisi organik di dalamnya. Apabila di sekitar tempat tumbuhnya banyak terdapat kalsium, maka pada buah yang dihasilkan akan terdapat banyak kalsium. Kelerengan ion-ion kalsium dalam tanah akan menyebabkan sumber kalsium yang dibutuhkan tanaman untuk tumbuh semakin terhambat (Fitriani dkk., 2012).

Kesimpulan

Kadar kalsium rata-rata pada cangkang kemiri yaitu 0,315 ± 0.09% serta kadar kalium rata-rata pada cangkang kemiri yaitu 0,09 ± 001%.

Ucapan Terima kasih

Penulis mengucapkan terima kasih kepada laboran Laboratorium Kesehatan Daerah Provinsi Sulawesi Tengah dan semua pihak yang banyak membantu penulis dalam menyelesaikan penelitian ini.

Referensi

